The Nano/Bio Interface Center of the University of Pennsylvania sponsors a day of education and outreach programs for the Penn community as well as for regional high schools and neighbors. Activities include exhibits and demonstrations, laboratory tours, a research poster session, videos on nanoscale science, and a science fair featuring high school research projects. The day culminates with an NBIC awards program featuring a prominent keynote speaker.

OVERVIEW: Schedule of Events for Wednesday, October 22, 2014

All events are open to the public except for the High School group NanoTours. Additional details for the program are presented after the Schedule Overview. A map is on the final page of the program.

9:00 – 9:45 AM
NanoDay Opening – Introduction to some exciting topics in nanotechnology
Skirkanich Hall, Berger Auditorium and Towne Hall Room 225, Raisler Lounge
What’s so big & hot about nano? Graduate students introduce some key concepts and cool applications of nano-scale science.

10:00 AM – 2:00 PM
NanoDay Activities – Learn more about the Nano Sciences
Exhibits and Demos: Explore exhibits and demonstrations highlighting nanoscale science and engineering presented by NBIC research groups. Towne Building, 1st Floor
Multimedia Presentation: Learn about exciting new discoveries from nanoscale researchers in physics, chemistry, physiology and engineering from this ongoing, big screen show. Towne Building, 1st Floor and Levine Hall, Lobby
High School Science Fair Research Projects: See posters and displays of research conducted by regional high school students. Displays will be available for viewing from 10 AM – 2 PM. To interact with the high school students about their work, visit the Science Fair during the judging, which will run from 12:30 PM – 2 PM. Levine Hall, Lobby
NanoTours and special college admission programs for visiting high school groups (pre-arranged; not open to the public)

3:00 – 3:45 PM
High School Science Research Awards Ceremony

Levine Hall, Wu & Chen Auditorium

Winners from the High School Science Fair Research Projects will be recognized (judging runs from 12:30 PM – 2 PM in Levine Lobby).

4:00 – 5:30 PM
Keynote Address and Graduate Student Awards

Krishna P. Singh Center for Nanotechnology, The Glandt Forum (3rd Floor)

Control Without Measurement: The Profound Challenge of Quantum Information

Charles Marcus, PhD, Keynote Speaker & 9th Annual NBIC Research Excellence Award

Using Light to Detect and Manipulate Biological Processes at the Nanometer Scale

Beatrice Markiewicz, NBIC Graduate Student Research Award

Graduate Student and Post-doctoral Image Awards

Scientific: **Zhengqing John Qi**, Physics, *TEM on Deformed Carbon Nanotube*

Artistic: **Iris Liu**, Chemical and Biomolecular Engineering, *Liquid Crystal*

5:30 – 7 PM

Research Poster Session and Reception

Krishna P. Singh Center for Nanotechnology, Lobby

NBIC research groups present some of their newest work.
10 AM – 2 PM Nanoscience Exhibits and Demos

Explore exhibits and demonstrations highlighting nanoscale science and engineering presented by NBIC research groups. **Towne Building, 1st Floor**

Quantum engineering with light
Bassett Group
http://nanoquant.seas.upenn.edu/

Polymer/Cell Viscoelastic Properties
Composto Group
http://www.seas.upenn.edu/~polymer/index.html

Protein Design for Solar Energy
Discher/Dutton Lab
http://www.med.upenn.edu/duttonlab/people.html

Color Change on the Nanoscale: Gold Nanoparticle Synthesis
Dmochowski Group
http://www.sas.upenn.edu/~ivandmo/

DNA Sequencing with Nanopores
Drndic Group
http://www.physics.upenn.edu/drndicgroup/

Unique Properties at the Nanometer Scale
Fakhraai and Park Groups
http://fakhraaigroup.chem.upenn.edu/index.html
http://parkgroup.chem.upenn.edu/index.html

Nano-bio Sensors and Electronic Noses
Johnson Group
http://www.lrsm.upenn.edu/~nanophys/

Nanomaterial Response to Stimuli
Murray Group
https://sites.sas.upenn.edu/cbmurray/

LCDs, Gummy Capsules, Nano Color and Invisibility
Nano/Bio Interface Center
http://www.nanotech.upenn.edu/
Computer simulations of protein nano-machines that control cell growth
Radhakrishnan Group
https://fling.seas.upenn.edu/~biophys/dynamic/wordpress/

More holes than cheese: high surface area materials and gas adsorption
Santiago Group
http://www.seas.upenn.edu/~santiago/index.html

10 AM – 2 PM High School Science Fair Research Projects

See posters and displays of research conducted by regional high school students. Displays will be available for viewing from 10 AM – 2 PM. Levine Hall, Lobby

To interact with the high school students about their work, visit the Science Fair during the judging, which will run from 12:30 PM – 2 PM in Levine Hall, Lobby.

Awards will be given at 3 PM. Levine Hall, Wu & Chen Auditorium

Grade 10

Cohen Davis
Sussex Academy
A Windy ride: The Feasability of Engineering a Wind Turbine on a Vehicle

Alexander deJong
Woodstown High School
Determining Which Sports Drink Has the Highest Concentration of Electrolytes

Khushbu Patel
Middle Township High School
Measuring Surface Tension

Gavin Rees
Germantown Academy
Modifying the One-time Pad Cryptosystem for Practical Use

Alexis Morgan Schneider
Upper Dublin High School
Relationships Between Headgear Effect and Amount of Impact
Sean Sia
Marine Academy of Technology and Environmental Science
What Type of Algae Species Grows Best in a Concentrated Carbon Dioxide Environment?

Nathaniel Watkins
Central Bucks High School West
Hydrogen Detection via the Optical Properties of Gold and Palladium Nanoparticles

Grade 11

Caroline Booraem
Academy of Notre Dame
On the Rebound: The Effect of Goalie Pad Construction on Collision Elasticity

Swetha Chengalvala
Methacton High School
Eat Right and Live Longer

Kerri Diamond
Souderton Area High School
The Hive Simulator: What a computer simulation can teach us about bee deaths

David Grabovsky
Lower Moreland High School

Matthew Horger
Bishop Shanahan High School
Creating A Video Game for The Blind Year 2: Testing the Idea

Catherine Huang
Julia R. Masterman Laboratory and Demonstration School
The Wonderful Prescription for the Brain: Chocolate

Milind Jagota
Liberty High School
Finding the Minimal Length for a Conductive, Random Network of Wires

Lois Kim
Parkland High School
Study on water uptake of Superabsorbent Polymers
Zachary Potter
Penn Ridge High School
The Effects of Various Electrolytes on a Hydrogen Fuel Cell

Tien-Sheng Jonathan Wang
High Technology High School
Comparison of Placement of Rim Sensors

Ian Wieteche-Reiman
Cheltenham High School
Exploring Night Lamp Cababilities Using Phosphorescence

Grade 12

Matthew Bahner
Central Bucks High School West
Robo Cube (Self Solving Rubik's Cube)

Kevin Biju
Methacton High School
The Hype in Hypoxia: Effect of Hypoxia on Tumor Progression via p-EGFRvIII

Megan Gaffney
Haddonfield Memorial High School
VOCS and Carbonblack in Dry Erase Markers

Shane Hensel
Central Bucks High School West
Identifying the Magentic Properties of Iron at the Nanoscale

Ben Hylak
Salesianum High School
Assisted Living Artificially Intelligent Robot (ALAIR)

Sam Miller
Unionville High School
The Effects of Running Biomechanics and Footwear on Shock Transmission in Experienced Distant Runners
Malika Shukurova
George Washington High School
Analysis of RHA recruitment to a CMV – promoter - regulated transcription site

Justin Wong
Germantown Academy
Coordinate Descent in 2 Dimensions for Protein Loop Closure
4:00-5:30 PM Keynote Address and Graduate Student Awards

Krishna P. Singh Center for Nanotechnology, The Glandt Forum (3rd Floor)

Presentation by the Keynote Speaker & 9th Annual NBIC Research Excellence Award

Control Without Measurement: The Profound Challenge of Quantum Information

Charles Marcus, PhD

Niels Bohr Institute, University of Copenhagen

Possessing astounding capability to make nearly whatever we wish from materials of our choice from the atomic scale upward, we (humans, that is) are poised to take on an engineering challenge of an entirely different level of complexity: to build machines that live in the quantum mechanical realm, where states of the machine do not exist prior to measurement and measurement at one point can project outcomes of measurements at other points. Can we make such a machine, what is it good for, what does it teach us about how our universe works? This talk will describe fledgling experimental approaches to building quantum coherent electrical circuits, the elementary building blocks of a future quantum processor. Approaches will be compared, and future challenges identified.

NBIC Graduate Student Research Award

Using Light to Detect and Manipulate Biological Processes at the Nanometer Scale

Beatrice Markiewicz, 4th year Graduate Student, Dept. of Chemistry at University of Pennsylvania’s School of Arts and Sciences

Light-matter interactions can be used to probe and manipulate the structure and dynamics of various biological systems at the nanometer scale. I will briefly discuss how photocages can be used to site-specifically control the structural integrity of peptide hydrogels with light. Also, I will highlight how two-dimensional infrared spectroscopy can be used to interrogate the mechanism of action of pH-gated biological nanopores, using the M2 proton channel of influenza A as an example.

Graduate Student and Post-doctoral Image Awards

Scientific: Zhengqing John Qi, Physics, *TEM on Deformed Carbon Nanotube*

Artistic: Iris Liu, Chemical & Biomolecular Engineering, *Liquid Crystal*

Animation: Martha Grady, PhD, Materials Science and Engineering, *Cell Injection*
5:30- 7 PM Research Poster Session

Krishna P. Singh Center for Technology, Lobby

A program with abstracts will be available at the poster session.

Enhanced Backward Stepping of Myosin V on NP Immobilized F-Actin
Matthew A Caporizzo, Russell J Composto, Yale E Goldman

Sustainable Hydrogen Production by Photoreforming of Alcohols Onto Size- and Shape-Engineered Brookite Rods
Matteo Cargnello, Thomas R. Gordon, Sergey Smolin, Tiziano Montini, Jason Baxter, Angelika Brückner, Paolo Fornasiero, Christopher B. Murray

Fabrication of Graphene-Engineered Protein FET Devices using Mechanical and Photolithography Methods
Madeline Diaz-Serrano, Chris Bialas, Bohdana M. Discher, A.T. Charlie Johnson

Protein Functionalization of Graphene Sensors for Cancer Biomarker Detection
Pedro Ducos, Madeline Diaz, Rodrigo Rodriguez, A.T. Charlie Johnson

Design and Characterization of a Single Chain Amphiphilic Maquette for Membrane Insertion and Electron Transfer
Bryan A. Fry, Geetha N. Goparaju, P. Leslie Dutton and Bohdana M. Discher

Viscoelastic properties of living cells
Martha E. Grady, Emmabeth Parrish, Matthew A. Caporizzo, Judith Kandel, Prathima Nalam, Robert W. Carpick, David M. Eckmann, Russell J. Composto

Quantum Engineering at Penn
David Hopper, Richard Grote, Lee Bassett

Nanoscale wear of patterned PMMA structures characterized via atomic force microscopy
Yijie Jiang, Zachary B. Milne, Robert W. Carpick and Kevin T. Turner

Examining interactions between cell mechanics and mitochondrial health
Judith Kandel, Philip Chou, Martha E. Grady, Matthew A. Caporizzo, Prathima Nalam, Russell J. Composto, David M. Eckmann

DNA-Carbon Nanotube Vapor Sensors for Complex Biochemical Samples
Nicholas J. Kybert, Katharine A. Prokop-Prigge, George Preti, A. T. Charlie Johnson

Fundamental Investigation of Spray Layer-by-Layer Assembly
WeiYang Lim, Abhishek Ravva, Daeyeon Lee

Cytoplasmic Dynein Ring Tilting, Identified Using Combined Single Particle Tracking and PoITIRF, Correlates with Stepping
Lisa G. Lippert, Tali Dadosh, Benjamin T. Diroll, Jeffrey Hallock, Christopher B. Murray, Samara L. Reck-Peterson, Yale E. Goldman

Measuring Viscoelasticity of Hydrogels using Magnetically-Actuated Scanning Probe Microscopy
Prathima C. Nalam, Matthew Caporizzo, Nitya N. Gosvami, Russell J. Composto, Robert W. Carpick
Growth of molybdenum disulphide by built-in source platform
Carl Naylor, Ganghee Han, Nicholas Kybert, A. T. Charlie Johnson

Dynamics of Sub-Micron Bubbles Growing in a Wedge in the Low Capillary Number Regime
Michael M. Norton, Frances M. Ross, Haim H. Bau

Multi-port Microfluidic Probe to Generate Hydrodynamically Confined Microflows
Choongbae Park, Kevin T. Turner

Dynamics of trapped water molecules inside an Aβ fibril
Ileana M. Pazos, Jianqiang Ma, Feng Gai

Protein-decorated graphene: the ionic screening effect and detection of enkephalin
Jinglei Ping, Pedro Ducos, Mitchell Lerner, Renyu Liu, and A. T. Charlie Johnson

Graphene Nanoribbon-Nanopore Devices for Biomolecule Detection and DNA Sequencing
Matthew Puster, Julio A. Rodriguez-Manzo, Adrian Balan, Marija Drndić

Model for DNA packing using molecular dynamics
Eric Rosenthal, Sara Jabbari-Farouji, Marc Joyeux

Liquid Cell Electron Microscopy with the nanoAquarium
Nicholas M Schneider, Michael M Norton, Jeung Hun Park, Frances M Ross, Haim H Bau

Computational Modeling and Design of Nonbiological Protein Assemblies
Christopher D. Von Bargen, Matthew J. Eibling, Christopher M. MacDermaid, Christopher J. Lanci, Michael J. Therien, Jeffery G. Saven

Scientific Image Award Winner: Transmission electron microscope of a deformed carbon nanotube being torn apart under mechanical stress. (John Qi)

Artistic Image Award Winner: Liquid Crystal (Iris Liu)

Animation Award Winner: Cell Injection (Martha Grady)
https://www.youtube.com/watch?v=bG2l2M2eUrY
A big thank you to the many volunteers who donated their time and expertise! The 2014 NanoDay@Penn could not happen without them.
Buildings with NanoDay@Penn activities are marked in Red. Specific locations are detailed within the program.

Nano/Bio Interface Center at the University of Pennsylvania is a Nanoscale Science and Engineering Center (NSEC) bringing together researchers from the Schools of Engineering and Applied Science; Arts and Sciences; and Medicine. The NBIC exploits Penn's internationally recognized strengths in design of molecular function and quantification of individual molecules. The Center unites investigators from ten departments to provide, not only new directions for the life sciences, but also for engineering in a two-way flow essential to fully realizing the benefits of nano-biotechnology.

NanoDay@Penn is brought to you by